Review, 4-21

- How to turn an unnormalized posterior into a normalized posterior
- What is Bayesian Inference?
- Typical definition of a posterior
- Predictive Distribution

Frequentist

- Limiting relative frequencies => probability is an observed property
- Parameters fixed and unknown => no need for probability of parameter
- Procedures for long-run frequencies (e.g. 95% CI)

Bayesian

- Probability is degree of belief
 => can derive probability of many things
- Can estimate probability of parameters
- Can draw inferences about parameter probability distribution, point estimates, intervals

Frequentist

- Limiting relative frequencies => probability is an observed property
- Parameters fixed and unknown => no need for probability of parameter
- Procedures for long-run frequencies (e.g. 95% CI)

Pro Bayes:

- Estimating distributions => uncertainty built in
- No need to choose model; always "admissible"
- Automatic regularization

Con:

- Need to assume prior (even if nothing can obviously work)
- Approximate solutions: tend to be a little less accurate for simple classification
 / regression problems

Pro Bayes:

- Estimating distributions => uncertainty built in
- No need to choose model; always "admissible"
- Automatic regularization

There is at least one situation where

Con:

- Need to assume prior (even if nothing can obviously work)
- Approximate solutions: tend to be a little less accurate for simple classification
 / regression problems

Goal:

Decent estimate of model accuracy

. . .

Goal:

Decent estimate of model accuracy

. . .

Goal:

Select a super-reliable penalty (alpha) (this is overkill)

Then pick best model and predict -> test

Goal:

Decent estimate of model accuracy

Goal:

Select a super-reliable penalty (alpha) (this is overkill)

Then pick best model and predict -> test

Goal:

Decent estimate of model accuracy

Goal:

Select a super-reliable penalty (alpha) (this is overkill)

Example: Assignment 3

Then pick best model and predict -> test

Introduction Time Series Analysis

Goal: Understanding temporal patterns of data (or real world events)

Common tasks:

- Trend Analysis: Extrapolate patterns over time (typically descriptive).
- Forecasting: Predicting a future event (predictive).
 (contrasts with "cross-sectional" prediction -- predicting a different group)

Introduction to Causal Inference (Revisited)

X causes Y as opposed to X is associated with Y

Changing X will change the distribution of Y.

X causes Y Y causes X

Spurious Correlations

Extremely common in time-series analysis.

Spurious Correlations

Extremely common in time-series analysis.

Age of Miss America

correlates with

Murders by steam, hot vapours and hot objects

Introduction to Causal Inference (Revisited)

X causes Y

as opposed to

X is associated with Y

Changing X will change the distribution of Y.

X causes Y Y causes X

$$P(Y = 1|X = 1) - P(Y = 1|X = 0)$$

Counterfactual Model: Exposed or Not Exposed: X = 1 or 0

$$Y = \begin{cases} C_0 & \text{if } X = 0 \\ C_1 & \text{if } X = 1 \end{cases} \qquad \underbrace{\begin{pmatrix} P(C_1 = 1) \\ P(C_1 = 0) \end{pmatrix}}_{\text{Causal Odds Ratio:}} \begin{pmatrix} \frac{P(C_0 = 1)}{P(C_0 = 0)} \end{pmatrix}$$

Simpson's "Paradox"

	Y=1	Y=0	Y=1	Y=0
X=1	.15	.225	.1	.025
X=0	.0375	.0875	.2625	.1125
	Z = men		Z = women	

http://vudlab.com/simpsons/

"(a.k.a. Serial correlation)."

Quantifying the strength of a temporal pattern in serial data.

Requirements:

Assume regular measurement (hourly, daily, monthly...etc..)

Quantifying the strength of a **temporal pattern** in serial data.

Which have temporal patterns?

Quantifying the strength of a **temporal pattern** in serial data.

Which have temporal patterns?

Quantifying the strength of a **temporal pattern** in serial data.

Quantifying the strength of a **temporal pattern** in serial data.

Quantifying the strength of a **temporal pattern** in serial data.

... \

Q: HOW?

A: Correlate with a copy of self, shifted slightly.

. . . .

Quantifying the strength of a **temporal pattern** in serial data.

Q: HOW?

A: Correlate with a copy of self, shifted slightly.

